
SMS-Based Contextual Web Search

Jay Chen
New York University

jchen@cs.nyu.edu

Brendan Linn
New York University
bl929@nyu.edu

Lakshminarayanan
Subramanian

New York University
lakshmi@cs.nyu.edu

ABSTRACT

SMS-based web search is different from traditional web search
in that the final response to a search query is limited to a
very small number of bytes (typically 1-2 SMS messages, 140
bytes each). SMS-based web search is also a non-interactive
search problem where the user has to specify a query and
obtain a response in one round of search. Enabling search
with with such constraints is challenging. Several search en-
gines have developed SMS-based search capabilities in recent
years and many of these search engines are limited in their
recognized topics (phone, address, location, weather etc.),
involve a human in the loop or apply to only specific types
of search queries. We describe a simple generic approach to
extracting results for both well-known and arbitrary topics.
We have implemented our prototype system SMSFind and
demonstrate the effectiveness of our approach. While the
underlying mechanisms we present are by no means perfect,
we show that our system returns appropriate responses for
a range of topics not covered by existing systems.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; H.2.4 [Database Man-

agement]: Systems—Query Processing ; H.3.3 [Information

Storage and Retrieval]: Information Search and Retrieval—
Search Process

General Terms

Algorithms, Design, Experimentation

Keywords

Cell Phones, SMS, Search, Context

1. INTRODUCTION
The rapid growth of mobile devices has made the mo-

bile phone ubiquitous in nearly all parts of the world. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHeld’09, August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-444-7/09/08 ...$10.00.

trend is that the personal computing platform is moving
away from the traditional desktop and laptops toward more
portable and accessible handheld devices. Despite this dra-
matic shift, the same applications and services that were
important to users on desktops, such as web search, remain
critical. Web search is facilitated by search engines which
index web pages and satisfy queries. Search engines have
done extremely well at indexing and returning the appropri-
ate documents for desktop search, and are beginning a push
to expand the search ecosystem to handheld devices. This is
especially important for developing countries where simple
mobile phones are often the first and only computing plat-
form available to the general public. Indeed, mobile phones
have already been leveraged for a wide variety of purposes [8,
5, 10, 15, 16] due to their low cost and ubiquity.

The adaptation of search to mobile devices is not com-
pletely straightforward. In a desktop search users are able
to use a simple search interface to enter queries that often re-
turn immediately useful results on the first page. The accu-
racy of results is generally satisfactory if the desired page is
within the top 10 results returned. If the queries entered are
vague, users may interactively refine their queries with sug-
gestions from the search engine or iteratively using feedback
from the results gathered in each search round. Although
users of more powerful smartphones have the luxury of such
an iterative search process, the majority of mobile devices
are still simple mobile phones that use SMS for search, and
the growing global market for SMS search reached 12 million
subscribers as of July 2008 [1]. SMS-based search imposes
interesting constraints on the problem. First, bandwidth
is extremely limited; it is both expensive and tedious for a
user to explore even the two most relevant pages returned
by a traditional search engine to find the information she
wants. Second, the information sought tends to fall in nar-
rower topics (and be smaller in size) than in desktop web
search. Returning an entire set of web pages is not accept-
able because only a few sentences will fit in the SMS pay-
load. Surprisingly, these terse response are sufficient for the
types of search queries SMS search is used for, as typical
uses of mobile web search include finding addresses, phone
numbers, directions, dates, prices, and short phrases such as
the definition of a word. To satisfy these kinds of queries
an entire web page of information is not required or even
desired.

In this paper, we focus on the problem of “appropriate in-
formation extraction”: Given a list of search responses to a
query by a search engine, how and which 140 bytes should be
extracted from the existing search response and associated

web pages. While existing services for mobile web search
(Google SMS [9], Yahoo! oneSearch [21], ChaCha [3]) re-
turn appropriate results for a number of topics, including
those mentioned above, they are often inconsistent or even
meaningless for queries relating to arbitrary topics. For ex-
ample, Google SMS returns the correct result for the query
“Barack Obama birthday”, yet it does not return anything
for the query “Barack Obama wife”. Since both queries have
short straightforward answers that are actually present at
the top of desktop search results for both Google and Yahoo
search engines, this is unsatisfactory. The reason the results
are so poor for these topics is because the SMS search ser-
vices use a limited set of pre-defined topics. These topics are
either identified through the use special keywords within the
search query such as “directions” or “movies” (Google SMS)
or have specialized parsers to determine which of the topics
is intended (e.g. querying “AAPL” to Yahoo! oneSearch is
a query for information about “stock quote”).

The main contribution of this work is to return relevant
results without using any pre-defined topics. We built our
system SMSFind to extract results for both pre-defined and
arbitrary topics of mobile web queries by using an explicit
contextual hint entered by the user. Our preliminary re-
sults show that although the pre-defined topics in SMSFind
may not be as finely tuned as existing systems, for arbitrary
context extractors our system returns significantly more rel-
evant results. Thus, our system is complimentary to existing
systems that require specialized parsers and data sources. In
this paper we begin with an overview of the background and
significance of this work and then go on to describe our sys-
tem architecture and the algorithms, metrics, and heuristics
used to extract our results. Finally, we compare the results
of example queries obtained from SMSFind with those of
Google SMS, Yahoo! oneSearch, and ChaCha.

2. BACKGROUND AND MOTIVATION
Search queries are inherently ambiguous, yet returning a

disambiguated result is vital to SMS search queries. In web
based information retrieval (IR) disambiguating queries can
be done by using context from which the search is being con-
ducted [11, 7]. Loosely, the term context is any additional
information associated with a query. The term “context”
is highly overloaded even when restricted to the IR space.
Context can mean the content of the page currently being
viewed by the user [12], the previous activity of the user [19],
or even the physical context of the user in the case of ubiq-
uitous and mobile computing [4]. For the purposes of this
work we define “context” as the topic that the search result
should be about.

Traditional approaches to contextual search may be clas-
sified into a few broad categories with their respective defini-
tions of context. One category includes personalization tools
which keep track of previous queries or documents viewed
or navigation patterns [19, 20]. These types of systems use
historical user preferences to refine results to fit the user.
While we currently use an explicit context term to boot-
strap our system, there is nothing preventing the use of our
extraction process with such context construction mecha-
nisms. Another area of research deals with query expansion
or reformulation techniques at various stages in the search
process to improve recall or precision [2, 14]. These efforts
use the context terms somehow as a part of the query it-
self. While we use the context as a part of the query refor-

mulation to a certain extent we find that it is unnecessary
to reformulate or expand heavily to retrieve the desired re-
sults. Typically, a “context term vector” is extracted from
the context of the search to represent the relative impor-
tance of terms in a vector space model [22]. Finally, domain
specific search engines use expert knowledge of a domain to
improve results [6]. The topic specific extractors in SMS
search services are lightweight versions of these expert sys-
tems inasmuch as they use some domain specific information
to obtain better results.

Contextual SMS search is different from traditional con-
textual desktop search in several ways. Unlike desktop search,
a SMS search does not have a web page from which a ref-
erence context may be automatically inferred. To address
this shortcoming and still get the benefits of contextual in-
formation, we could simply ask the user to explicitly define
the context for their query. While this appears to be a sim-
ple solution, it is not without pitfalls that must be carefully
avoided. First, even in desktop search, users prefer not to
spend additional energy formulating queries using advanced
search features [17, 18]. This is not unique to mobile search-
minimizing the extra cognitive load on the user of a system
is a top priority for usability. Second, the small form factor
of the device (mobile phone) and the limited bandwidth of
the transport medium (SMS) further constrain the possible
solutions. Any query and additional information should fit
within a single SMS message (less than 140 bytes). Also,
the small form factor and low bandwidth make an iterative
search process improbable so only a single SMS should be
returned. To address these usability issues we adopted the
same interface as existing SMS search interfaces (a simple
“querybox”), and require the user to append only a single
context term as the last word in list of search terms (similar
to Google SMS). The challenge is to use this single term hint
and a combination of techniques and heuristics to find the
most relevant result under 140 bytes and in a single round.

Re-framing this problem in terms of contextual search, re-
quiring only a single word as the context means a vector of
length one. With such a short context term vector the tradi-
tional algorithms for contextual search do not map directly
to the problem. Our problem, however, may be simplified
by two observations. First, the results expected by a SMS
search are narrower than desktop web search. We can as-
sume that the result should fit in 140 bytes; queries that
have no concise and specific answer (e.g. “medieval Japan”)
are unlikely to occur in our usage scenario. Second, although
we are limited to only a single context term, we assume that
this context term is useful. Extracting the proper context to
use for disambiguation is a research problem in itself, but for
us the problem is simplified because the context is explicitly
given.

3. SMSFIND OVERVIEW
The architecture of the SMSFind system consists of a

server connected to the Internet and to a mobile phone. The
client is a user with a mobile phone who sends a SMS mes-
sage to the number of the server phone which then processes
the search query. The search query is dispatched to a gen-
eral search engine and result pages are downloaded. The
server extracts the results from the downloaded pages, and
distills them down to 140 bytes. Finally, the server returns
the results to the number that issued the request.

The extraction process at the server is the heart of SMS-

Table 1: List of top 10 intermediate N-gram results for the query“the office dwight actor” and their associated

metrics prior to filtering heuristics

N-gram Raw Frequency Minimum Distance Mean Rank Type

wilson 16 1 1.5 name
rainn 16 1 1.25 name
rainn wilson 15 1 1.33 name
dwight schrute 9 2 0.78 name
schrute 9 2 0.77 name
actor rainn wilson 7 0 1.14 mixed
plays dwight 7 2 0.57 mixed
actor rainn 7 0 1.14 mixed
&bull 6 94 4 name
wilson who plays 5 2 0.8 mixed

Find. The input to the system is a search query of the
form “<query, context>”. where the query represents the
actual search terms and the context specifies the type of
contextual information that the user expects the system to
extract. During the extraction process our system gathers
potential results in the form of N-grams from a corpus of
webpages, where an N-gram is simply any set of N space
delimited terms found within those webpages. The N-grams
are measured according to several metrics and then ranked.
The most highly ranked result is then returned to the user.
In this section we define the relevant metrics used in our
algorithms, and detail the process and heuristics used to
extract the most relevant results.

3.1 Extraction Metrics
We intend for the algorithms of SMSFind to act as either

a front-end to or be incorporated into large-scale search en-
gines. Thus, the metrics used to construct the final rank
of each N-gram need to be computationally fast so queries
may be answered in real-time. SMSFind pushes as much of
the computationally intensive indexing, ranking, and search-
ing down to the underlying search engine as possible. With
this in mind, the metrics we have defined for our extraction
process are as follows:

Raw frequency - The number of times each N-gram oc-
curs across all result pages. This is similar to the term fre-
quency in the traditional term frequency-inverse document
frequency (TF-IDF) weight measure except we are dealing
with N-grams and not individual terms. Also, we do not
currently normalize the frequency by the document length.

Mean rank - The sum across every occurrence of an N-
gram of the rank of the page in which it occurs, divided
by the N-gram’s raw frequency. We use this measure as the
importance of an N-gram similar in spirit to the inverse doc-
ument frequency component in TF-IDF except our metric
incorporates the ranking of the underlying search engine.
(In our results some N-grams have a mean rank of less than
1 because the page containing the search engine’s results is
assigned a rank of zero.)

Minimum distance - The minimum distance between
an N-gram and the context term across any occurrences of
both. Intuitively, this metric indicates the proximity of the
context term defined by the user is to the search query. It is
used in disambiguating relevance of two otherwise similarly
ranked N-grams.

Type - One of four values: phrase, if every 1-gram in the
N-gram is an English word (excluding names); name, if every

1-gram is a sequence of letters that is not an English word;
number, if every 1-gram is a sequence of digits; and mix, if
the N-gram contains 1-grams of different type. We use these
types only when we have some notion of the type of result
desired for particular topics not for arbitrary topics. These
types are not meant to be definitive, but are simply used to
show how arbitrary topics in SMSFind may be extended to
topics where some domain specific knowledge of the desired
result is known.

3.2 Extraction Process
The critical step in SMSFind is the extraction process at

the server which distills the search response to 140 bytes. We
briefly outline the key steps in our extraction process. The
three phases of the extraction process are: gather, distill,
and coalesce. We describe each phase and the heuristics
involved to develop an intuition about why our extraction is
successful.

3.2.1 Gather

The process begins by gathering the corpus of pages from
which to extract data. These pages and the search results
pages themselves form the working set of SMSFind. Our
approach is a simplified version of query rewriting and auto-
mated query expansion techniques typically used to improve
recall in web search systems. The goal is to gather as many
pages as are possibly relevant and to allow the underlying
general engine to do the heavy lifting. We build our initial
set of pages by downloading the top K search results both
with and without the context from a standard search engine
(Google). Currently, K is set to 5. While it is possible to
use multiple search engines to further increase the recall, for
the simple queries we see in SMS search, recall does not ap-
pear to be the limiting factor. In our case gathering enough
pages to distinguish between N-grams using our extraction
metrics is sufficient.

3.2.2 Distill

The distill process of SMSFind is context dependent. SMS-
Find categorizes contexts into two types: known and un-
known. The known context refers to contexts such as phone,
weather, address etc. For each known context, we write
a context specific information extractor. For example, ex-
tracting phone numbers from a web page is fairly straight-
forward. We outline the different possible ways in which
phone numbers may be expressed within a page. For cer-
tain types of context such as addresses, writing a context

specific extractor is harder. In this case, we leverage a zip-
code extractor and extract the relevant textual information
before the zipcode to determine the full address. Search en-
gines have good extractors for known contexts. We focus on
describing how distill the relevant information for unknown
contexts.

Inputs to SMSFind consist of a list of terms where the last
term in the query is the context. For example, in the query
“NYU CS department chair”, the term “chair” refers to the
context of interest. To find the relevant terms for arbitrary
contexts we first we perform the distill operation based on
the context term in the query. For each parseable (text)
page in the corpus the text surrounding the context term
is extracted. This is currently done by taking any sentence
containing the context term, the sentence before, and the
sentence after the context term. We address certain corner
cases such as non-sentences using simple heuristics such as
delimiting sentences across long whitespaces.

The next step is to slice each of these sentences into N-
grams of size 1 through 3. Since we are no longer searching
for documents of page-sized granularity, it is intuitive for
each web page to be further sliced into smaller, more rele-
vant pieces. The maximum N-gram length of 3 is somewhat
arbitrary and may be increased, but our system is depen-
dent on the N-gram appearing with some level of frequency
for our algorithm to work. Intuitively, longer N-grams will
appear less often and may be below the threshold for which
we distill N-grams. This can be mitigated if we merge the
counts for synonymous N-grams, but we leave that for future
work. Our next step is to count the raw frequency of the
N-grams in our corpus, and measure the distance from the
context term at which each N-gram occurrs and record the
minimum. An example of the type of data we have at this
point is shown in Table 1. In this example query “the office
dwight actor” should return the response “rainn wilson” as
highlighted in the table. Note that this type of example is
exactly in the range of queries that we are interested in, it is
too rare for a custom extractor and common enough to be
detectable by our system. From the list of N-grams we can
observe that after slicing most of the top results are highly
relevant to the query according to our metrics. However,
simply naively re-ranking according to any single metric we
have defined will not return the correct result. At this point
the slicing and measurement process for N-grams this mea-
surement process is complete, and SMSFind begins distilling
the results using several heuristics and tunable cutoffs.

Heuristics - After the potential N-grams are gathered,
we employ several heuristics to remove unlikely candidates.
The first heuristic we use is to remove N-grams with low fre-
quency (< 4). These are unlikely to be relevant since they
do not occur commonly enough. The next heuristic we use
is to remove N-grams with high minimum distance (> 10).
The intuition here is that while these N-grams appear often
enough, they never appear close enough to the context term
to be relevant. We also remove N-grams with minimum dis-
tance 0 to avoid the echoing the context term back to the
user. Currently, the thresholds for these heuristics are hand
tuned; the generalization of these parameters is a topic we
leave for further study. Next, we perform additional heuris-
tics for distilling “English phrases” using a simple 1MB dic-
tionary of terms and the “Web 1T 5-gram Version 1”dataset
from the Linguistic Data Consortium (LDC) [13] which pro-
vides the web shingle frequency information. Again, the cut-

offs are tunable parameters in our system and are set at val-
ues that we observed to work well. We also remove 1-grams
which are extremely short (< 3 letters) and N-grams con-
sisting only of pronouns or hypertext tags to reduce noise.
N-grams which are subsumed by longer N-grams are also
removed. We do not currently incorporate the metrics for
the subsumed N-grams into the larger N-gram because it is
still unclear what rank-aggregation algorithm would be the
most beneficial. Finally, we remove the N-grams which over-
lap with the original query (> 1 term in common) to avoid
echoing back the query.

3.2.3 Coalesce

In this final phase the N-grams are first categorized by
their type. The type is used only for contexts that we have
some concept of to filter out irrelevant types. E.g. for a con-
text of phone, we would filter out N-grams of non-numeric
type. For contexts that we have no expert knowledge about,
the type is simply ignored. The ranking process is performed
by first bucketing the N-grams by their minimum distance,
and ranking from lowest minimum distance first. Then for
each bucket, the N-grams are ranked by their mean rank.
Continuing from our earlier example, the final result after
applying all of the heuristics is “rainn wilson”. In the ex-
amples section we take a look at more examples comparing
SMSFind with existing SMS search services and begin ex-
ploring the limitations of our approach.

4. IMPLEMENTATION
SMSFind is implemented in only 300 lines of Python code

and uses publicly available parsing libraries. We have not
yet conducted detailed benchmarks on our implementation
or performed any optimizations. On a 1.8Ghz Duo Core
Intel PC with 2 GB of RAM and a 100Mbps connection
SMSFind generally returns results within 5-10 seconds. This
is inclusive of the time required to fetch query results from
Google and download web pages referred to by the results.

5. PRELIMINARY EVALUATION
First, to give a comparison of the difference between the

results found by SMSFind and the existing systems we show
some example queries and their results returned. In Table 2
we compare SMSFind to similar services, including Google
SMS, Yahoo! oneSearch, and ChaCha.1 For the first exam-
ple we show how well the different systems work for a known
context to get a baseline to compare against for SMSFind.
For the query “abraham lincoln birthday”, all three auto-
mated services were successful to some extent. In the case
of GoogleSMS and Yahoo! oneSearch the custom extractors
recognized the “birthday” keyword, and were able to return
correct results. Interestingly, we did not have a topic-specific
extractor implemented for “birthday” in SMSFind, yet our
results are correct. ChaCha also returned excellent results
for this first query.

1Note that ChaCha is a human-mediated service. It refuses
all of the queries as they appear in Table 2. The output
under the ChaCha column was received only after rephras-
ing the queries in natural language, e.g. “when is Abraham
Lincoln’s birthday?” Requiring users to rephrase queries in
natural language represents in some cases an additional con-
straint upon the user if they do not wish to use in this ex-
tended format.

Table 2: Comparison of results for example queries between search services

query SMSFind Google SMS Yahoo! oneSearch ChaCha

abraham lincoln
birthday

february 12 Abraham Lincoln
Date of Birth: 12
February 1809

Celebrate! Holidays
In The USA - Abra-
ham Lincoln’s Birth-
day (February 12)

Abraham Lincoln
was born on Febru-
ary 12, 1809, in
Hodgenville, Hardin
County, Kentucky.

google ceo eric schmidt (no results) (stock lookup for
ticker “CEO”)

Eric Schmidt is the
Chairman of the
Board and Chief
Executive Officer of
Google

lakshmi subramanian
phone

212 998 3485 (no results) News: Oops! 2 Sus-
pects Hail Wrong Car

They are located at
6189 N Pinnackle
Ridge Dr. Tucson,
AZ 85718-3502

Next, we show how SMSFind works with an arbitrary
topic example that is simple, but does not have terms that
are common enough for a custom extractor to be built. The
second query is: “google ceo”. This example is where the
arbitrary context extractor of SMSFind distinguishes itself.
By using ceo as the context SMSFind was able to return
a highly relevant result. Ironically, Google SMS returned
no results, probably because it has no custom extractors for
the “ceo” keyword. Yahoo! oneSearch returned a false posi-
tive result, determining that the query was tied to the stock
quote topic and interpreted “ceo” as a stock symbol. The
human expert at ChaCha once again had no trouble return-
ing the correct result. For the third query “lakshmi sub-
ramanian phone”, SMSFind recognized the context term as
one expecting a numerical answer, and filtered out textual
results properly to return the correct result. Google SMS
again returned no results, even though the first web page
returned in a desktop Google search contains the answer.
Again, Yahoo! oneSearch’s top result was bizarre and un-
helpful. Even the human-mediated ChaCha appears to have
misinterpreted the query to be about a private residence.

Finally, we ran SMSFind on queries adapted from Google
Trends queries to evaluate performance. Google Trends is
an hourly enumeration of 100 queries deemed by Google to
be popular (although the company does not disclose how it
ranks them). The queries typically reflect the day’s news and
popular culture, so they are broadly relevant for evaluating
SMSFind. However, a majority of Google Trends queries
are open-ended in a way that SMS queries presumably would
not be. We modified the Google Trends queries from May 5,
2009 by adding a focusing keyword to obtain a query useful
to evaluating an SMS search tool. For example, a manual
web search revealed that the query “kryptos” was popular
on May 5 likely due to a recent press coverage of a piece of
artwork. Accordingly, the query was modified to “kryptos
artist” before sending it to SMSFind. We modified 31 of the
100 queries in this manner. The remaining 69 queries were
too vague for us to modify in a meaningful way.

Overall, SMSFind returned a correct response for 22 of
the 31 queries (≈ 71%). and when it did return a correct
response, the mean rank of the response was ≈ 3.36. Table
3 shows the best result returned by SMSFind with accom-
panying rank for the 22 queries where SMSFind returned
a correct response. SMSFind answers “person” and “date”

queries well, although not perfectly (note the low rank of the
correct result for “nba mvp”, for example). Broader queries,
such as asking for a symptom of a disease, perform less well.

Table 4 shows the queries that SMSFind failed to answer.
Although our test corpus is fairly small we can observe that
certain queries and contexts do not perform as as others
presumably due to their low frequency count.

6. CONCLUSION & FUTURE WORK
SMSFind shows that very simple algorithms that lever-

age existing search engines are capable of returning results
that perform better for a wide variety of topics that custom
extractors are not suited for. While human-in-the-loop and
NLP techniques may provide equal or better precision, they
come at the cost of computation or human intervention and
do not scale as well as this simple approach. We have shown
that our system performs well using only a single additional
context hint in the query. A more detailed evaluation is
required to determine the precise algorithms and operating
parameters that work best, but the overall approach is both
novel and promising.

Our approach currently implements no additional opti-
mizations. Some very simple optimizations and improve-
ments that could lead to even better performance include
noise reduction using various filtering techniques, and cate-
gorization for specialized parsers and databases such as those
used by the existing SMS search systems. Another exciting
and unexplored avenue is in adapting our approach to in-
ternational markets that use other languages or scripts. Fi-
nally, we currently only return the top N-grams as our result;
it would be simple to return surrounding sentences or mul-
tiple results to the user. Regardless of the future direction,
we expect that as mobile phones become more powerful the
hardware capabilities may increase, but the need for short
focused bits of information will remain.

7. REFERENCES
[1] Critical Mass: The Worldwide State of the Mobile

Web. The Nielsen Company, 2008.
[2] P. Bruza, R. McArthur, and S. Dennis. Interactive

Internet search: keyword, directory and query
reformulation mechanisms compared. In Proceedings of
the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 280–287. ACM New York, NY, USA, 2000.

Table 3: SMSFind successful Google Trends queries

Original Query Modified Query Correct Result (if returned) Mean Rank of
Correct Result

kryptos kryptos artist artist james sanborn 1
james sanborn james sanborn sculpture kryptos sculpture 4
shia labeouf mother shia labeouf mother shayna saide 4
renardo sidney renardo sidney school ucla 8
celiac disease celiac disease symptom constipation 6
celiac disease celiac disease symptom malabsorption of nutrients 7
maggie gyllenhaal maggie gyllenhaal husband peter sarsgaard is the hus-

band
2

mexican flag mexican flag colors green white and red 1
trent reznor trent reznor girlfriend mariqueen maandig 2
swine flue swine flu school students back at nyc 2
filene s basement filenes basement location boston 6
selena roberts selena roberts book arod 4
selena roberts selena roberts book alex rodriguez 7
mexican desserts mexican dessert ancho 5
battle of puebla battle of puebla date 1862 1
nba mvp nba mvp lebron james 4
danny gans danny gans death cause unknown 2
jon and kate plus 8 drama jon kate plus 8 star jon gosselin 2
rihanna rihanna boyfriend boyfriend chris brown 1
john mayer john mayer girlfriend girlfriend scheana marie 2
bob schimmel bob schimmel wife melissa 2
rolex submariner rolex submariner price 16610 1

Table 4: SMSFind failed Google Trends queries

Original Query Modified Query

peter sarsgaard peter sarsgaard wife
bruce pearl bruce pearl fiancee
blackberry curve blackberry curve cost
star wars day star wars day
mega millions mega millions winner
nj marathon nj marathon winner
jack kemp jack kemp funeral
timothy wright timothy wright funeral
steve-o demise and rise steve-o demise and rise net-

work

[3] ChaCha. http://www.chacha.com.
[4] G. Chen and D. Kotz. A survey of context-aware

mobile computing research. Technical report,
Technical Report TR2000-381, Dept. of Computer
Science, Dartmouth College, 2000.

[5] CommCare.
http://www.dimagi.com/content/commcare.html.

[6] W. Dorda, T. Wrba, G. Duftschmid, P. Sachs,
W. Gall, C. Rehnelt, G. Boldt, and W. Premauer.
ArchiMed: a medical information and retrieval
system. Phlebologie, 38(1):16–24, 2008.

[7] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. Placing search
in context: The concept revisited. ACM Transactions
on Information Systems, 20(1):116–131, 2002.

[8] FrontlineSMS. http://www.frontlinesms.com/.
[9] Google SMS. http://www.google.com/sms.

[10] InSTEDD GeoChat. http://instedd.org/geochat/.
[11] R. Kraft, C. Chang, F. Maghoul, and R. Kumar.

Searching with context. In Proceedings of the 15th

international conference on World Wide Web, pages
477–486. ACM New York, NY, USA, 2006.

[12] S. Lawrence. Context in web search. IEEE Data
Engineering Bulletin, 23(3):25–32, 2000.

[13] Linguistic Data Consortium.
http://www.ldc.upenn.edu.

[14] M. Mitra, A. Singhal, and C. Buckley. Improving
automatic query expansion. In Proceedings of the 21st
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 206–214. ACM New York, NY, USA, 1998.

[15] OpenRosa. http://www.openrosa.org/.
[16] M. Paik et al. The Case for SmartTrack. IEEE/ACM

Conference on Information and Communication
Technologies and Development (ICTD), 2009.

[17] G. Pass, A. Chowdhury, and C. Torgeson. A Picture of
Search. In First Intl. Conf. on Scalable Information
Systems, 2006.

[18] D. E. Rose and D. Levinson. Understanding User
Goals in Web Search. In WWW, May 2004.

[19] X. Shen, B. Tan, and C. Zhai. Context-sensitive
information retrieval using implicit feedback. In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 43–50. ACM New York,
NY, USA, 2005.

[20] J. Teevan, S. Dumais, and E. Horvitz. Personalizing
search via automated analysis of interests and
activities. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 449–456.
ACM New York, NY, USA, 2005.

[21] Yahoo One Search.
http://mobile.yahoo.com/onesearch.

[22] C. Yu, K. Lam, and G. Salton. Term weighting in
information retrieval using the term precision model.
Journal of the ACM (JACM), 29(1):152–170, 1982.

